

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The Intensities of $f \leftrightarrow f$ Transitions and Bonding in Fluorinated Lanthanide β -Diketone Chelates

S. S. L. Surana^a; R. C. Mathur^{ab}; S. P. Tandon^a

^a Department of Physics, University of Jodhpur, Jodhpur, India ^b Defence Laboratory, Jodhpur, India

To cite this Article Surana, S. S. L. , Mathur, R. C. and Tandon, S. P.(1978) 'The Intensities of $f \leftrightarrow f$ Transitions and Bonding in Fluorinated Lanthanide β -Diketone Chelates', Spectroscopy Letters, 11: 6, 389 — 397

To link to this Article: DOI: 10.1080/00387017808067760

URL: <http://dx.doi.org/10.1080/00387017808067760>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE INTENSITIES OF $f \leftrightarrow f$ TRANSITIONS AND BONDING IN FLUORINATED
LANTHANIDE β -DIKETONE CHELATES

S.S.L.SURANA, R.C.MATHUR* AND S.P.TANDON

Department of Physics, University of Jodhpur, Jodhpur, India.

Interest in the intensity of lanthanide $f \leftrightarrow f$ spectra have begun nearly forty years ago, but most of the work was done after the publication of the theory of lanthanide intensity by Judd¹ and Ofelt² independently in 1962. Since then a number of lanthanide complexes having O-, N- or mixed donor ligands have been studied for the one reason or the other. Various β -diketone chelates were studied³⁻⁷ for the reason that they proved to be good lasing materials. The present communication extends this study further to fluorinated β -diketone chelates of Pr^{3+} and Nd^{3+} , which gives useful information regarding interelectronic repulsion, spin-orbit interaction, nephelauxetic effect and bonding in these chelates.

The visible spectra of lanthanides arise⁸ due to forbidden transitions within the ground $4f^N$ configuration. To the first approximation the energy level structure of $4f^N$ configuration may be considered to arise from the electrostatic and magnetic interactions between the 4f electrons. These interactions can be expressed in terms of Slater-Condon parameters F_K and Lande's parameter ζ_{4f} .

As a result of the complexation, contraction or expansion of wave functions occur, which is reflected by the changes in values of F_K and ζ_{4f} parameters with respect to the corresponding free ion

* Present address: Defence Laboratory, Jodhpur, India.

values. This phenomenon is known as nephelauxetic effect⁹, and can be expressed by the nephelauxetic ratio β defined as

$$\beta = F_K^c / F_K^f \quad \dots (1)$$

where c and f refer to the complex and free ion respectively.

If the degree of covalency ($b^{1/2}$) is defined as the amount of 4f-ligand mixing in the metal wave function, then the metal wave function can be written¹⁰ as

$$\langle \phi_{4f} \rangle = (1-b)^{1/2} \langle 4f \rangle - b^{1/2} \langle \phi_{\text{ligand}} \rangle \quad \dots (2)$$

On simplification of eq. (1) with the help of eq. (2), we get a relation between β and $b^{1/2}$, given by

$$b^{1/2} = \left[\frac{1}{2}(1 - \beta) \right]^{1/2} \quad \dots (3)$$

The +ve and -ve values of b for a complex correspond to covalent and ionic characters respectively.

The $f \leftrightarrow f$ transitions are assumed to be forced-electric dipole in nature, occurring by the mixing of a higher energy configuration of opposite parity with the $4f^N$ configuration. The equation derived by Judd¹ and Olfelt² for the oscillator strength P of a transition between a ground state $\langle f^N \Psi_J \rangle$ and an excited state $\langle f^N \Psi_J' \rangle$ of the lanthanide ion in solution is

$$P = \sum_{\lambda=2,4,6} \gamma T_{\lambda} \langle f^N \Psi_J \rangle |U^{(\lambda)}| |f^N \Psi_J'|^2 \quad \dots (4)$$

T_{λ} values are usually treated as empirical parameters. These quantities are related to the radial wave functions of the states, the refractive index of the medium and the ligand field parameters which characterize the environmental field.

RESULTS AND DISCUSSIONS

The chelates of Pr^{3+} and Nd^{3+} with acetylacetone (AA), trifluoroacetylacetone (TFA) and hexafluoroacetylacetone (HFA) were

prepared by the usual methods^{11,12}. The absorption measurements in the region 360-1000 nm were carried out with a Carl Zeiss VSU-2 Spectrophotometer using methanol as solvent. The experimental and calculated values of the energy levels and oscillator strengths of the absorption bands have been collected in Tables 1-4.

The Slator-Condon parameters F_2 , F_4 , F_6 and the Lande' ζ_{4f} parameter for the chelates under study were evaluated by expressing the energy as a Taylor series expansion by Wong's method¹³ and have been collected in Table 5. In calculating these parameters the composite bands observed at $\sim 12500 \text{ cm}^{-1}$ and $\sim 13450 \text{ cm}^{-1}$ in case of Nd^{3+} chelates were not considered. In most of the cases F_K 's and ζ_{4f} of lanthanide complexes exhibit a decrease from the values of the corresponding parameters of free ion, because on complexation expansion of the central metal ion orbital takes place.

The calculated F_K parameters were used to compute the nephelauxetic ratio δ and the bonding parameter $b^{1/2}$, using relations (1) and (3).

The degree of covalency indicated by $b^{1/2}$ decreases in the order AA > TFA > HFA. The reduction in parameters with respect to the free ion parameters for Nd^{3+} chelates is less than that observed in case of Pr^{3+} chelates. It shows that the bonding due to 4f metal orbitals - ligand orbitals interaction is weaker in Nd^{3+} chelates than that in the corresponding Pr^{3+} chelates.

The intensity T_λ parameters were calculated from P_{exp} using eq. (4) by Carnall et. al.¹⁴ method. The parameters have been collected in Table 5, along with the energy parameters. In case of Nd^{3+} chelates under study T_4/T_6 is nearly constant, whereas T_2 shows an appreciable change. With the increase in the oscillator strength of the hypersensitive band in the region $16500-18000 \text{ cm}^{-1}$, T_2 parameter shows a gradual increase. Pr^{3+} chelates under study do not show any such regularity in these parameters. The r.m.s. deviation obtained

Table 1. Energy values (in cm^{-1}) of bands of Nd^{3+} -chelates

Level	AA		TFA		HFA	
	E_{exp}	E_{cal}	E_{exp}	E_{cal}	E_{exp}	E_{cal}
$^4I_{9/2}$	0	0	0	0	0	0
$^4F_{3/2}$	11440	11380	11364	11413	11481	11464
$^4F_{5/2}, ^2H_{9/2}$	12384		12346		12398	
$^4F_{7/2}, ^4S_{3/2}$	13333		13363		13385	
$^4F_{9/2}$	14605	14607	14590	14705	14640	14735
$^2H_{11/2}$	15805	15605	16000	15919	15873	15878
$^4G_{5/2}$	17167	17167	17232	17197	17226	17274
$^4G_{7/2}$	19007	18976	19084	19124	19139	19152
$^2G_{9/2}$	19418	19399	19531	19504	19531	19541
$^4G_{9/2}$	20852	20804	21008	21056	21031	21042
$^2D_{3/2}$	21060	20914	21097	21122	21242	21190
$^4G_{11/2}$	21505	21460	21598	21515	21710	21585
$^2P_{1/2}$	23250	23150	22970	22982	23118	23051
r.m.s.deviation		± 74		± 57		± 56

Table 2. Oscillator strengths ($P \times 10^6$) of Nd^{3+} -chelates

Spectral region	AA		TFA		HFA	
	P_{exp}	P_{cal}	P_{exp}	P_{cal}	P_{exp}	P_{cal}
11000-12000	2.05	1.94	2.27	2.14	3.23	2.58
12000-13000	8.96	9.26	10.30	10.80	12.00	12.91
13000-14000	11.00	10.95	13.30	12.92	16.00	15.34
14000-15000	0.72	0.82	0.95	0.96	1.80	1.15
15500-16500	0.31	0.22	0.41	0.26	0.60	0.31
16500-18000	33.45	33.55	38.10	38.13	47.00	47.00
18500-19200	4.50	4.34	5.71	4.93	6.35	5.98
19200-20500	1.33	1.63	1.63	1.88	1.81	2.24
20500-21100	0.25	0.52	0.39	0.61	0.27	0.72
21100-21500	1.30	0.18	1.84	0.19	1.56	0.23
21500-22000	0.35	0.26	0.47	0.30	0.58	0.36
22000-24000	0.46	0.38	0.56	0.40	0.49	0.48
r.m.s.deviation		$\pm 3.60 \times 10^{-7}$		$\pm 5.70 \times 10^{-7}$		$\pm 6.13 \times 10^{-7}$

Table 3. Energy values (in cm^{-1}) of bands of Pr^{3+} -chelates

Level	AA		TFA		HFA	
	E_{exp}	E_{cal}	E_{exp}	E_{cal}	E_{exp}	E_{cal}
$^1\text{P}_2$	16806	16803	16920	17129	16920	17144
$^3\text{P}_0$	20242	20241	20661	20708	20747	20796
$^3\text{P}_1$	20833	20747	21231	21310	21322	21319
$^3\text{P}_2$	22123	21945	22523	22511	22472	22478
r.m.s.deviation	± 99		± 114		± 114	

Table 4. Oscillator strengths ($P \times 10^6$) of Pr^{3+} -chelates

Level	AA		TFA		HFA	
	P_{exp}	P_{cal}	P_{exp}	P_{cal}	P_{exp}	P_{cal}
$^1\text{D}_2$	2.90	2.89	6.09	6.09	5.07	5.07
$^3\text{P}_0$	4.51	6.62	4.31	5.36	3.57	4.63
$^3\text{P}_1$	7.05	6.77	6.53	5.44	5.80	4.70
$^3\text{P}_2$	9.12	8.66	19.64	19.64	16.70	16.70
r.m.s. deviation	$\pm 1.72 \times 10^{-6}$		$\pm 0.75 \times 10^{-6}$		$\pm 0.76 \times 10^{-6}$	

Table 5. Energy, Bonding and Intensity Parameters of Nd^{3+} and Pr^{3+} -chelates

	F_2	F_4	F_6	S_{4f}	β	$b^{1/2}$	$T_2 \times 10^6$	$T_4 \times 10^6$	$T_6 \times 10^6$
(A) Nd^{3+}-chelates									
AA	324.26	48.65	4.95	872.20	0.9791	0.1020	16.49	4.50	12.12
TFA	327.98	50.17	5.16	873.80	0.9904	0.0693	18.84	4.77	14.41
HFA	330.87	49.46	5.20	874.70	0.9991	0.0210	23.36	5.70	17.14
aquo ¹⁶	-	-	-	-	-	-	2.97	4.32	4.18
free ion ¹⁴	331.16	50.71	5.15	884.00	-	-	-	-	-
(B) Pr^{3+}-chelates									
AA	303.50	41.90	4.57	695.90	0.9423	0.1700	7.40	2.05	2.62
TFA	308.24	42.54	4.65	729.17	0.9570	0.1466	7.93	1.50	6.03
HFA	310.79	42.89	4.69	691.81	0.9649	0.1324	4.01	1.29	5.14
aquo ¹⁷	-	-	-	-	-	-	4.26	1.66	2.70
free ion ¹⁴	322.09	44.46	4.87	741.00	-	-	-	-	-

for Pr^{3+} chelates is also high as compared to that obtained for the corresponding Nd^{3+} chelates. Also the values of T_2 required to obtain the best fit are in some cases¹⁵ negative and consequently are meaningless in terms of theory, since by definition $T_2 > 0$. These observations suggest that the intensity theory of Judd-Ofelt in the present form is not applicable to Pr^{3+} chelates.

ACKNOWLEDGEMENTS

The authors are grateful to the Council of Scientific and Industrial Research, India and to Prof. A.N.Nigam, Head, Department of Physics, University of Jodhpur, Jodhpur for providing the necessary facilities.

REFERENCES

1. Judd, B.R., *Phys. Rev.*, 127, 750 (1962).
2. Ofelt, G.S., *J. Chem. Phys.*, 37, 511 (1962).
3. Lempicki, A., Samelson, H., Brecher, C. and Brophy, V., *Appl. Phys. Lett.*, 5, 173 (1964).
4. Tandon, S.P. and Mehta, P.C., *J. Chem. Phys.*, 52, 4313, 4896, 5417 (1970).
5. Mehta, P.C. and Tandon, S.P., *J. Chem. Phys.*, 53, 414 (1970).
6. Mehta, P.C., Surana, S.S.L., Bhutra, M.P., Tandon, S.P. and Tandon, K., *Spectrosc. Letts.*, 4, 181 (1971).
7. Mathur, R.C., Surana, S.S.L. and Tandon, S.P., *Can. J. Spectroscopy*, 20, 81 (1975).
8. Wybourne, B.G., *Spectroscopic Properties of Rare Earths*, (Wiley, New York, 1965).
9. Jorgensen, C.K., *Progr. Inorg. Chem.*, 4, 73 (1962).
10. Henrie, D.E. and Choppin, G.R., *J. Chem. Phys.*, 49, 477 (1968).
11. Crosby, C.A., Whan, R.E. and Alive, P.W., *J. Chem. Phys.*, 34, 743 (1961).
12. Whan, R.E. and Crosby, C.A., *J. Mol. Spectrosc.*, 8, 315 (1962).
13. Wong, B.Y., *J. Chem. Phys.*, 35, 544 (1961).
14. Carnall, W.T., Fields, P.R. and Rajnak, K., *J. Chem. Phys.*, 49, 4412, 4424, 4443, 4447, 4450 (1968).

15. Peacock, R.D., J. Chem. Soc. (A), 2028 (1971).
16. Sinha, S.P., Mehta, P.C. and Surana, S.S.L., Mol. Phys., 23, 807 (1972).
17. Surana, S.S.L., Mathur, R.C. and Tandon, S.P., Acta Ciencia Indica, 1, 149 (1975).

Received 1-16-78

Accepted 4- 4-78